The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  X  X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  2  X  X  X  X  X  X  X
 0 2X+2  0  0  0  2 2X+2  2  0  0  0  0  2 2X+2  2 2X+2  0  0  0  0  2 2X+2  2 2X+2  0  0  0  0  2 2X+2  2 2X+2 2X 2X 2X 2X 2X 2X+2 2X  2 2X 2X+2 2X  2 2X 2X 2X+2  2 2X 2X 2X+2  2 2X 2X 2X+2  2 2X 2X 2X+2  2 2X 2X 2X 2X 2X+2  2 2X+2  2  2  2 2X+2 2X+2  2  2  0  0  0  0 2X+2  0  0 2X+2 2X+2 2X+2 2X+2 2X+2 2X 2X 2X+2  2 2X+2  0  2  0  0  0 2X  0 2X
 0  0 2X+2  0  2  2 2X+2  0  0  0  2 2X+2  2 2X+2  0  0 2X 2X 2X+2  2 2X+2  2 2X 2X 2X 2X 2X+2  2 2X+2  2 2X 2X  0 2X  2 2X+2 2X 2X+2  0 2X+2 2X+2 2X 2X+2  0 2X  0 2X+2 2X+2 2X+2 2X+2 2X  0  0 2X  2  2  2  2  0 2X  0 2X  2  2  2  2  0 2X  2  0  2 2X  2  0 2X 2X+2  2  0  2  2 2X+2  0 2X  2 2X+2 2X 2X+2  2  2 2X 2X+2  0  0  0  0 2X 2X 2X 2X
 0  0  0 2X+2  2  0 2X+2  2 2X  2 2X+2 2X 2X  2 2X+2 2X 2X  2 2X+2 2X 2X  2 2X+2 2X  0 2X+2  2  0  0 2X+2  2  0  2 2X+2  0 2X  0  0  2  2  2  2 2X 2X 2X 2X+2 2X 2X+2 2X+2  0 2X+2  0 2X 2X+2 2X 2X+2 2X+2  0 2X+2  0  0  2  2 2X  0  2  2 2X  0 2X+2 2X 2X+2 2X  2  2 2X  0 2X+2  0  2  2  0  0  2  2  2  2  2 2X+2 2X 2X+2  0 2X  0 2X 2X  0  0  0

generates a code of length 99 over Z4[X]/(X^2+2) who�s minimum homogenous weight is 96.

Homogenous weight enumerator: w(x)=1x^0+238x^96+512x^99+158x^100+112x^104+1x^128+2x^132

The gray image is a code over GF(2) with n=792, k=10 and d=384.
This code was found by Heurico 1.16 in 0.938 seconds.